1. Using iterrows() to extract dataframe row wise.
Solution:
import pandas as pd
Sales={'Year1':{'Qtr1':43000,'Qtr2':76000,'Qtr3':76000},\
'Year2':{'Qtr1':47000,'Qtr2':60000,'Qtr3':96000},\
'Year3':{'Qtr1':63000,'Qtr2':36000,'Qtr3':46000}}
df1=pd.DataFrame(Sales)
for (row, rowSales)
in df1.iterrows():
print("Row index : ", row)
print("Containg :")
print(rowSales)
print()
Output :
Row index : Qtr1
Containg :
Year1 43000
Year2 47000
Year3 63000
Name: Qtr1, dtype:
int64
Row index : Qtr2
Containg :
Year1 76000
Year2 60000
Year3 36000
Name: Qtr2, dtype:
int64
Row index : Qtr3
Containg :
Year1 76000
Year2 96000
Year3 46000
Name: Qtr3, dtype: int64
2. Using iterrows() to extract row-wise Series
objects.
Solution:
import pandas as pd
Sales={'Year1':{'Qtr1':43000,'Qtr2':76000,'Qtr3':76000},\
'Year2':{'Qtr1':47000,'Qtr2':60000,'Qtr3':96000},\
'Year3':{'Qtr1':63000,'Qtr2':36000,'Qtr3':46000}}
df1=pd.DataFrame(Sales)
for (row, rowSales)
in df1.iterrows():
print("Row index : ", row)
print("Containg :")
i=0
for val in rowSales:
print("At",i,"position:", val)
i=i+1
Output:
Row index : Qtr1
Containg :
At 0 position: 43000
At 1 position: 47000
At 2 position: 63000
Row index : Qtr2
Containg :
At 0 position: 76000
At 1 position: 60000
At 2 position: 36000
Row index : Qtr3
Containg :
At 0 position: 76000
At 1 position: 96000
At 2 position: 46000
3. Using iteritems() to extract data from
dataframe columns wise.
Solution:
import pandas as pd
Sales={'Year1':{'Qtr1':43000,'Qtr2':76000,'Qtr3':76000},\
'Year2':{'Qtr1':47000,'Qtr2':60000,'Qtr3':96000},\
'Year3':{'Qtr1':63000,'Qtr2':36000,'Qtr3':46000}}
df1=pd.DataFrame(Sales)
for (Column,
colSales) in df1.iteritems():
print("Column index : ", Column)
print("Containg :")
print(colSales)
print()
Output:
Column index : Year1
Containg :
Qtr1 43000
Qtr2 76000
Qtr3 76000
Name: Year1, dtype:
int64
Column index : Year2
Containg :
Qtr1 47000
Qtr2 60000
Qtr3 96000
Name: Year2, dtype:
int64
Column index : Year3
Containg :
Qtr1 63000
Qtr2 36000
Qtr3 46000
Name: Year3, dtype:
int64
4. Using iteritems() to extract column wise
Series objects.
Solution:
import pandas as pd
Sales={'Year1':{'Qtr1':43000,'Qtr2':76000,'Qtr3':76000},\
'Year2':{'Qtr1':47000,'Qtr2':60000,'Qtr3':96000},\
'Year3':{'Qtr1':63000,'Qtr2':36000,'Qtr3':46000}}
df1=pd.DataFrame(Sales)
for (Column,
ColumnSales) in df1.iteritems():
print("Column index : ", Column)
print("Containg :")
i=0
for val in ColumnSales:
print("At",i,"position:", val)
i=i+1
Output:
Column index : Year1
Containg :
At 0 position: 43000
At 1 position: 76000
At 2 position: 76000
Column index : Year2
Containg :
At 0 position: 47000
At 1 position: 60000
At 2 position: 96000
Column index : Year3
Containg :
At 0 position: 63000
At 1 position: 36000
At 2 position: 46000
5. Write a program to print the DataFrame df,
one row at a time.
Solution:
import pandas as pd
student={"Name":["Ansu","Aviral","Kanha","Mritunjay"],\
"Marks":[54,76,98,43]}
df1=pd.DataFrame(student,index=['Rno.1','Rno.2','Rno.3','Rno.4'])
for i, j in df1.iterrows():
print(j)
print("_____________")
Output:
Name Ansu
Marks 54
Name: Rno.1, dtype:
object
_____________
Name Aviral
Marks 76
Name: Rno.2, dtype:
object
_____________
Name Kanha
Marks 98
Name: Rno.3, dtype:
object
_____________
Name Mritunjay
Marks 43
Name: Rno.4, dtype:
object
_____________
6. Write a program to print DataFrame df, one
column at a time.
Solution:
import pandas as pd
student={"Name":["Ansu","Aviral","Kanha","Mritunjay"],\
"Marks":[54,76,98,43]}
df1=pd.DataFrame(student,index=['Rno.1','Rno.2','Rno.3','Rno.4'])
print("Student
Information:\n",df1)
print()
for i, j in
df1.iteritems():
print(j)
print("_____________")
Output:
Student Information:
Name Marks
Rno.1 Ansu
54
Rno.2 Aviral
76
Rno.3 Kanha
98
Rno.4 Mritunjay
43
Rno.1 Ansu
Rno.2 Aviral
Rno.3 Kanha
Rno.4 Mritunjay
Name: Name, dtype:
object
_____________
Rno.1 54
Rno.2 76
Rno.3 98
Rno.4 43
Name: Marks, dtype:
int64
7. Write a program to print only the values
from marks column, for each row.
Solution:
import pandas as pd
student={"Name":["Ansu","Aviral","Kanha","Mritunjay"],\
"Marks":[54,76,98,43]}
df1=pd.DataFrame(student,index=['Rno.1','Rno.2','Rno.3','Rno.4'])
print("Student
Information:\n",df1)
print()
for i, row in
df1.iterrows():
print(row['Marks'])
print("===========")
Output:
Student Information:
Name Marks
Rno.1 Ansu
54
Rno.2 Aviral
76
Rno.3 Kanha
98
Rno.4 Mritunjay
43
54
=====================
76
=====================
98
=====================
43
=====================
No comments:
Post a Comment