1. An Emp.csv file table contains the
following data: (emp.csv)
EmpNo |
Name |
Department |
Salary |
Commission |
Job |
100 |
Sunita
Arora |
RESEARCH |
45600 |
4560 |
Clerk |
101 |
Ashok
Singhal |
SALES |
43000 |
4300 |
Salesman |
102 |
Sumit
Avasti |
SALES |
45900 |
4590 |
Salesman |
103 |
Nitin
Katiyar |
RESEARCH |
35000 |
3500 |
Manager |
104 |
Varun
Saini |
SALES |
42000 |
4200 |
Salesman |
105 |
Tarun
Ahuja |
SALES |
48000 |
4800 |
Manager |
106 |
Divya
Katiyar |
ACCOUNTS |
42500 |
4250 |
Manager |
107 |
Bhavneet |
RESEARCH |
45000 |
4500 |
Analyst |
108 |
Jyotsna
Sharma |
ACCOUNTS |
41000 |
4100 |
Clerk |
109 |
Ankita
Shukla |
SALES |
35000 |
3500 |
Manager |
110 |
Vanshika
Verma |
OPERATIONS |
45600 |
4560 |
Sr.
Manager |
111 |
Swati
Jaiswal |
RESEARCH |
47800 |
|
Sr.
Manager |
112 |
Shradha
Singh |
OPERATIONS |
43600 |
|
Clerk |
(a)
Using above table create a
DataFrame called DFemp
(b)
Display the department wise
total salary.
(c)
Display the department wise
average salary.
(d)
Display the department wise
total and average salary.
(e)
Display the department wise
maximum and minimum salary.
(f)
Display the department and job
wise maximum salary.
SOLUTION import
pandas as pd import
numpy as np DFemp=pd.read_csv('d:/emp.csv') print(DFemp) print() print('department
wise total salary') pv=DFemp.pivot_table(index='Department',values='Salary',aggfunc=np.sum) print(pv) print() pv1=DFemp.pivot_table(index='Department',values='Salary',aggfunc=np.mean) print(pv1) print() pv2=DFemp.pivot_table(index='Department',values='Salary',aggfunc=[np.sum,np.mean]) print(pv2) print() pv3=DFemp.pivot_table(index='Department',values='Salary',aggfunc=[np.max,np.min]) print(pv3) pv4=DFemp.pivot_table(index=['Department','Job'],values='Salary',aggfunc=np.max) print(pv4) |
2. A sample dataset with different columns as given
Table -Item
Itemno |
ItemName |
Color |
Price |
1 |
Ball Pen |
Black |
15 |
2 |
Pencil |
Blue |
5.5 |
3 |
Ball Pen |
Green |
10.5 |
4 |
Gel Pen |
Green |
11 |
5 |
Notebook |
Red |
15.5 |
6 |
Ball Pen |
Green |
11.5 |
7 |
Highlighter |
Blue |
8.5 |
8 |
Gel Pen |
Red |
12.5 |
9 |
P Marker |
Blue |
8.6 |
10 |
Pencil |
Green |
11.5 |
11 |
Ball Pen |
Green |
10.5 |
Answer the
following questions(assume that the DataFrame name is dfA)
(a)
Using the above table, create a
DataFrame called df.
(b)
Create a pivot table to display
item name wise items from DataFrame df.
(c)
Create a table to display item
name and item number wise price for all rows.
(d)
Create a table to display item
name and item number wise price for all colors.
(e)
Create a table to display item
name and item number wise sum of color values.
(f)
Create a table to display item
name and item number wise total price for all color items along the rows and
columns.
(g)
Create a table to display item
name wise total price for all colors.
SOLUTION import
pandas as pd import numpy
as np print("Answer
A") df=pd.read_csv('d:/items.csv') print(df) print("Answer
B") print('item
name wise items') pv=df.pivot_table(index='ItemName',columns='Itemno',
fill_value='-') print(pv) print("Answer
C") pv1=df.pivot_table(index=['ItemName','Itemno'],
fill_value='-') print(pv1) print("Answer
D") pv2=df.pivot_table(index=['ItemName','Itemno'],columns='Color',fill_value="-") print(pv2) print("Answer
E") pv3=df.pivot_table(index=['ItemName'],columns='Color',fill_value="-",aggfunc=np.sum) print(pv3) print("Answer
F") pv4=pv3=df.pivot_table(index=['ItemName','Itemno'],columns='Color',aggfunc=np.sum,margins=True) print(pv4) print("Answer
G") pv4df.pivot_table(index=['ItemName'],columns='Color',values='Price',fill_value="-",
aggfunc=np.sum,margins=True) print(pv4) |
3. A DataFrame contains information Customer.csv:
|
Customer |
Region |
Order_Date |
Sales |
Month |
Year |
0 |
Lamba book
Stall |
East |
2020-04-19 |
1256000 |
April |
2020 |
1 |
Muskan book
Stall |
South |
2019-05-22 |
1359000 |
May |
2019 |
2 |
Sarswati
book Stall |
North |
2020-06-11 |
1670000 |
August |
2020 |
3 |
TM books |
West |
2020-06-02 |
1820000 |
October |
2020 |
4 |
Narayana
Pustak |
North |
2020-10-11 |
2560000 |
August |
2020 |
5 |
BOOKWELL
distributers |
West |
2018-05-11 |
1568000 |
September |
2018 |
6 |
Jain book
Agency |
South |
2017-06-20 |
1233000 |
May |
2017 |
7 |
New India
Agency |
North |
2016-10-29 |
1730000 |
November |
2016 |
8 |
Mahabharat
Book Stall |
West |
2020-06-02 |
2560000 |
January |
2020 |
9 |
Aviral
Bustak Bhandar |
South |
2015-10-11 |
1568000 |
October |
2015 |
|
Libra book
Seller |
East |
2018-05-11 |
1233000 |
December |
2018 |
SOLUTION import pandas as pd import numpy as np df=pd.read_csv('d:/customer.csv') print(df) print("Answer a") pv=df.pivot_table(index='Region',columns='Year',values='Sales',aggfunc='mean') print(pv) print("Answer b") pv1=df.pivot_table(index='Year',columns='Region',aggfunc='mean') print(pv1) print("Answer c") pv2=df.pivot_table(index='Year',columns='Region',values='Sales',aggfunc='sum') print(pv2) print("Answer d") pv3=df.pivot_table(index='Year',columns='Region',values='Sales',aggfunc=[np.min,np.max]) print(pv3) print("Answer e") pv4=df.pivot_table(index='Region',aggfunc='count') print(pv4) print("Answer f") Pv5=df.pivot_table(values='Sales',columns='Region',index='Year') print(Pv5) Pv6=df.pivot_table(index='Region',columns='Year',aggfunc=np.mean) print(Pv6.stack()) |

4. A data set
is given the sales of two products in four different regions.
Region |
Year |
Product |
Unit Sold |
Southeast |
2018 |
Air Purifier |
87 |
Northwest |
2019 |
Air Conditioner |
165 |
Southwest |
2019 |
Air Purifier |
122 |
Northeast |
2019 |
Air Conditioner |
132 |
Southeast |
2018 |
Air Conditioner |
98 |
Northeast |
2019 |
Air Purifier |
120 |
Northwest |
2018 |
Air Purifier |
137 |
Southeast |
2019 |
Air Conditioner |
83 |
Northwest |
2018 |
Air Purifier |
128 |
Northwest |
2019 |
Air Conditioner |
149 |
Southwest |
2018 |
Air Purifier |
167 |
Northeast |
2018 |
Air Conditioner |
139 |
Using the above data set answer the following :
a)
Create table pivotable to
summarize the data into region and product wise total sales.
Solution :
import numpy as np
import pandas as pd
df=pd.read_csv('d:/regions.csv')
print(df)
print()
pv=df.pivot_table(index=['Region','Product'],values='Unit
Sold',aggfunc=np.sum)
print(pv)
b)
Print the summary report.

5. A data set is given with 11 employee in
different cities as given below (EJob.csv)
:
Name |
Position |
City |
Age |
Sex |
Aakash |
Manager |
Delhi |
35 |
M |
Sunakshi |
Programmer |
Mumbai |
37 |
F |
Amitabh |
Manager |
Kanpur |
33 |
M |
Madhuri |
Programmer |
Mumbai |
40 |
F |
Ashish |
Manager |
Kanpur |
27 |
M |
Akshay |
Programmer |
Kanpur |
34 |
M |
Preeti |
Programmer |
Delhi |
26 |
F |
Govinda |
Manager |
Delhi |
30 |
M |
Rani |
Manager |
Mumbai |
28 |
F |
Shilpa |
Manager |
Kanpur |
26 |
F |
Ayushman |
Programmer |
Delhi |
28 |
M |
Using the above data set table answer the following :
a)
Create a pivot table to print
the positions of average of age of each city.
b)
Create a pivot table to print
the positions of average of age of city and sex.
c)
Create a pivot table to print
the average of age for each position and sex.
d)
What will be output of the
following:
SOLUTION import
numpy as np import
pandas as pd df=pd.read_csv('d:/narainpython/df/Ejob.csv') print(df) print() print("Answer
A :") pv=df.pivot_table(index=['Position'],columns='City',values='Age',aggfunc=np.mean) print(pv) print("Answer
B :") pv=df.pivot_table(index=['Position'],columns=['City','Sex'],values='Age',aggfunc=np.mean) print(pv) print("Answer
C :") pv=df.pivot_table(index=['Position','Sex'],columns='City',values='Age',aggfunc=np.mean) print(pv) print() print("Output
D :") print(df.pivot_table(index=['Position'],aggfunc={'Age':np.mean})) |

6: A DataFrame
contains following data (Employee.csv):
Name |
Qualification |
Experience |
Manorama |
Masters |
8 |
Rashmi |
Graduate |
11 |
Parul |
Post
Graduate |
7 |
Satyam |
Masters |
9 |
Deepak |
Graduate |
6 |
Arif |
Post
Graduate |
8 |
Adil |
Masters |
10 |
Write the command for the following (assume that the
Dataframe name is dfT)
(a)
Find the average experience for
each qualification.
(b)
Find the total experience for
each qualification.
(c)
Find the average experience for
each qualification and name.
(d)
What will be the following
display:
Pva=pd.pivot_table(dfT,indext=
“Qualification”, columns= “Qualifiaction”, values= ‘Experience’, aggfunc=np.sum)
Pva.stack()
7. A sample
dataset is given with different columns as given below(Product.csv):
Product_ID |
ProductName |
Manufacturer |
Price |
CustomerName |
City |
PC01 |
Personal
Computer |
HCL
India |
42000 |
Anchal |
Delhi |
LC05 |
Laptop |
HP USA |
55000 |
Rupal |
Mumbai |
PC03 |
Personal
Computer |
Dell USA |
32000 |
Parul |
Delhi |
PC06 |
Personal
Computer |
Zenith
USA |
37000 |
Anirudh |
Chennai |
LC03 |
Laptop |
Dell USA |
57000 |
Ashish |
Bengaluru |
AL03 |
Monitor |
HP USA |
9800 |
Saurya |
Delhi |
CS03 |
Harddisk |
Dell USA |
5400 |
Sachin |
Mumbai |
PR06 |
MotherBoard |
Intel USA |
17500 |
Divya |
Delhi |
BA03 |
UPS |
Microtek
India |
4300 |
Yashika |
Chennai |
MC01 |
Monitor |
HCL
India |
68000 |
Sakshi |
Bengaluru |
a)
Create a city wise customer
table.
b)
Create a pivot table for
manufacturer wise product names and their price.
c)
Arrange the data frame in ascending
order of customer name.
d)
Arrange the data frame in
ascending order of City and Price.
8. A sample dataset is given with four quarter sales
data for five employees:
Name of Employee |
Sales |
Quarter |
State |
R sahay |
125600 |
1 |
Delhi |
Sachin |
235600 |
1 |
Tamil Nadu |
Jyotsna |
213400 |
1 |
Kerala |
Amit |
189000 |
1 |
Haryana |
Swati |
456000 |
1 |
West Bengal |
Ankita |
436500 |
2 |
Haryana |
R sahay |
214300 |
2 |
Delhi |
Sachin |
325400 |
2 |
Tamil Nadu |
Jyotsna |
121200 |
2 |
Kerala |
Amit |
214300 |
2 |
Haryana |
Swati |
214600 |
2 |
West Bengal |
Ankita |
326890 |
2 |
Haryana |
R sahay |
256000 |
3 |
Delhi |
Sachin |
250600 |
3 |
Tamil Nadu |
Jyotsna |
203400 |
3 |
Kerala |
Amit |
197000 |
3 |
Haryana |
Swati |
406000 |
3 |
West Bengal |
Ankita |
436500 |
4 |
Haryana |
R sahay |
256000 |
4 |
Delhi |
Sachin |
250600 |
4 |
Tamil Nadu |
Jyotsna |
203400 |
4 |
Kerala |
Write the command for the following : (Employees.csv)
(a)
Find the total sales of each
employee.
(b)
Find the total sales by state.
(c)
Find the total sales each by both
employees wise and size wise.
(d)
Find the maximum individual
sale by state.
(e)
Find the mean, meadin and minimum
sales by state.
No comments:
Post a Comment