Practice Line Chart Questions (Class 12 IP)
1. Plot a line chart showing the marks
of a student in 5 subjects.
Ans:
import matplotlib.pyplot as plt
# Data
subjects = ["Math", "Science",
"English", "History", "Computer"]
marks = [85, 78, 92, 74, 88]
# Plotting line chart
plt.plot(subjects, marks, marker='o', linestyle='-',
linewidth=2)
# Adding labels and title
plt.xlabel("Subjects")
plt.ylabel("Marks")
plt.title("Marks of a Student in 5
Subjects")
# Display the chart
plt.show()
2. Draw a line chart to show the sales
of a company for 12 months.
Ans:
import matplotlib.pyplot as plt
# Data
months = ["Jan", "Feb",
"Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct",
"Nov", "Dec"]
sales = [12000, 15000, 18000, 22000, 21000, 25000,
27000,
30000, 28000, 26000, 24000, 31000]
# Plotting line chart
plt.plot(months, sales, marker='o', linestyle='-',
linewidth=2)
# Adding labels and title
plt.xlabel("Months")
plt.ylabel("Sales (in ₹)")
plt.title("Company Sales Over 12 Months")
# Display the chart
plt.show()
3. Plot a line chart showing the
temperature of a city for 7 days.
Ans:
import matplotlib.pyplot as plt
# Data
days = ["Mon", "Tue",
"Wed", "Thu", "Fri", "Sat",
"Sun"]
temperature = [30, 32, 31, 29, 28, 33, 34]
# Plotting line chart
plt.plot(days, temperature, marker='o', linestyle='-',
linewidth=2, color='orange')
# Adding labels and title
plt.xlabel("Days of the Week")
plt.ylabel("Temperature (°C)")
plt.title("Temperature of a City Over 7
Days")
# Display the chart
plt.show()
4. Create a line chart showing the
population growth of a country from 2000 to 2020 (every 5 years).
Ans:
import matplotlib.pyplot as plt
# Data
years = [2000, 2005, 2010, 2015, 2020]
population = [50, 58, 67, 77, 90] # in millions
# Plotting line chart
plt.plot(years, population, marker='o', ls='-', lw=2,
color='green')
# Adding labels and title
plt.xlabel("Year")
plt.ylabel("Population (in millions)")
plt.title("Population Growth of a Country (2000 -
2020)")
plt.grid(True)
# Display the chart
plt.show()
5. Draw a line chart showing the
rainfall (in mm) of 6 months in a city.
Ans:
import matplotlib.pyplot as plt
# Data
months = ["Jan", "Feb",
"Mar", "Apr", "May", "Jun"]
rainfall = [120, 95, 150, 200, 170, 140] # rainfall in mm
# Plotting line chart
plt.plot(months, rainfall, marker='o', linestyle='-',
linewidth=2, color='blue')
# Adding labels and title
plt.xlabel("Months")
plt.ylabel("Rainfall (mm)")
plt.title("Rainfall in a City Over 6
Months")
plt.grid(True)
plt.savefig("Line5.jpg")
# Display the chart
plt.show()
6. Plot a line chart showing the profit
earned by a shop in 8 years.
Ans:
import matplotlib.pyplot as plt
# Data
years = ["2013", "2014",
"2015", "2016", "2017", "2018",
"2019", "2020"]
profit = [20000, 25000, 27000, 30000, 35000, 37000,
40000, 45000] # in ₹
# Plotting line chart
plt.plot(years, profit, marker='o', ls='-', lw=2,
color='purple',label='Profit')
# Adding labels and title
plt.xlabel("Years")
plt.ylabel("Profit (₹)")
plt.title("Profit Earned by a Shop Over 8
Years")
plt.grid(True)
plt.legend()
plt.savefig("Line6.jpg")
# Display the chart
plt.show()
7. Create a line chart comparing the
marks of two students in 5 subjects.
Ans:
import matplotlib.pyplot as plt
# Data
subjects = ["Math", "Science",
"English", "History", "Computer"]
student_A = [85, 78, 92, 74, 88]
student_B = [80, 82, 89, 70, 90]
# Plotting line chart
plt.plot(subjects, student_A, marker='o',
linestyle='-', linewidth=2, label="Student A")
plt.plot(subjects, student_B, marker='s',
linestyle='--', linewidth=2, label="Student B")
# Adding labels and title
plt.xlabel("Subjects")
plt.ylabel("Marks")
plt.title("Comparison of Marks Between Two
Students")
plt.legend()
# Save the chart as an image
plt.savefig("students_marks_comparison.png") # saves in the same folder as script
# Display the chart
plt.show()
8. Draw a line chart showing petrol
prices in India for 10 months.
Ans:
import matplotlib.pyplot as plt
# Data
months = ["Jan", "Feb",
"Mar", "Apr", "May", "Jun",
"Jul", "Aug", "Sep", "Oct"]
petrol_prices = [95, 97, 99, 100, 102, 101, 103, 104,
106, 108] # in ₹ per litre
# Plotting line chart
plt.plot(months, petrol_prices, marker='o',
linestyle='-', linewidth=2, color='red',mfc='b')
# Adding labels, title, and grid
plt.xlabel("Months")
plt.ylabel("Petrol Price (₹ per litre)")
plt.title("Petrol Prices in India (10
Months)")
plt.grid(True, linestyle="--", alpha=0.6)
# Save the chart as an image
plt.savefig("petrol_prices_chart.png")
# Display the chart
plt.show()
9. Plot a line chart showing the number
of visitors to a park in 7 days. Add marker color blue and marker edge color is
red.
Ans:
import matplotlib.pyplot as plt
# Data
days = ["Mon", "Tue",
"Wed", "Thu", "Fri", "Sat",
"Sun"]
visitors = [120, 150, 100, 180, 200, 300, 250]
# Plotting line chart with blue markers and black
edges
plt.plot(days, visitors, marker='o', markersize=8,
mfc='blue', mec='red',
linestyle='-', linewidth=2, color='green')
# Adding labels and title
plt.xlabel("Days of the Week")
plt.ylabel("Number of Visitors")
plt.title("Visitors to a Park Over 7 Days")
plt.savefig("Visitors.png")
# Display the chart
plt.show()
10. Create a line chart showing the
literacy rate of a country for 6 decades.
Ans.
import matplotlib.pyplot as plt
# Data
decades = ["1960", "1970",
"1980", "1990", "2000", "2010"]
literacy_rate = [40, 50, 60, 70, 80, 90] # in percentage
# Plotting line chart
plt.plot(decades, literacy_rate, marker='o',
linestyle='-', linewidth=2, color='purple')
# Adding labels and title
plt.xlabel("Decades")
plt.ylabel("Literacy Rate (%)")
plt.title("Literacy Rate of a Country Over 6
Decades")
# Display the chart
plt.show()
Practice Bar Chart Questions
1. Plot a bar chart showing the
population of five countries.
Ans:
import matplotlib.pyplot as plt
# Data
countries = ["India", "China",
"USA", "Brazil", "Russia"]
population = [1400, 1410, 331, 213, 146] # in millions
# Plotting bar chart
plt.bar(countries, population, color='skyblue',
edgecolor='black')
# Adding labels and title
plt.xlabel("Countries")
plt.ylabel("Population (in millions)")
plt.title("Population of Five Countries")
# Display the chart
plt.show()
2. Draw a bar chart for the average
rainfall (in mm) of 6 months in a city.
Ans:
import matplotlib.pyplot as plt
# Data
months = ["Jan", "Feb",
"Mar", "Apr", "May", "Jun"]
rainfall = [120, 95, 150, 200, 170, 140] # in mm
# Plotting bar chart
plt.bar(months, rainfall, color='blue',
edgecolor='black')
# Adding labels and title
plt.xlabel("Months")
plt.ylabel("Average Rainfall (mm)")
plt.title("Average Rainfall in a City Over 6
Months")
# Display the chart
plt.show()
3. Create a bar chart for the number of
students in different streams (Science, Commerce, Arts).
Ans:
import matplotlib.pyplot as plt
# Data
streams = ["Science", "Commerce",
"Arts"]
students = [120, 80, 100]
# Plotting bar chart
plt.bar(streams, students, color=['green', 'orange',
'purple'], edgecolor='black')
# Adding labels and title
plt.xlabel("Streams")
plt.ylabel("Number of Students")
plt.title("Number of Students in Different
Streams")
# Display the chart
plt.show()
4. Plot a bar chart showing the sales of
two companies in 5 different years.
Ans:
import matplotlib.pyplot as plt
import numpy as np
# Data
years = ["2016", "2017",
"2018", "2019", "2020"]
company_A = [50, 60, 70, 65, 80] # in lakhs
company_B = [55, 58, 72, 60, 85] # in lakhs
# X-axis positions
x = np.arange(len(years))
width = 0.35 #
width of bars
# Plotting side-by-side bars
plt.bar(x - width/2, company_A, width,
label="Company A", color="skyblue",
edgecolor="black")
plt.bar(x + width/2, company_B, width,
label="Company B", color="orange",
edgecolor="black")
# Adding labels and title
plt.xlabel("Years")
plt.ylabel("Sales (in lakhs)")
plt.title("Sales of Two Companies Over 5
Years")
plt.xticks(x, years)
plt.legend()
# Display the chart
plt.show()
5. Draw a horizontal bar chart showing
the literacy rate of 6 states in India.
Ans:
import matplotlib.pyplot as plt
# Data
states = ["Kerala", "Maharashtra",
"Tamil Nadu", "Karnataka", "Gujarat",
"Bihar"]
literacy_rate = [96.2, 82.3, 80.1, 75.4, 78.0,
61.8] # in percentage
# Plotting horizontal bar chart
plt.barh(states, literacy_rate, color='teal',
ec='black') #ec-> edgecolor
# Adding labels and title
plt.xlabel("Literacy Rate (%)")
plt.ylabel("States")
plt.title("Literacy Rate of 6 States in
India")
# Display the chart
plt.show()
6. Make a grouped bar chart comparing
marks of three students in 4 subjects.
Ans:
import matplotlib.pyplot as plt
import numpy as np
# Data
subjects = ["Math", "Science",
"English", "History"]
student_A = [85, 78, 92, 74]
student_B = [80, 82, 89, 70]
student_C = [88, 76, 85, 80]
# X-axis positions
x = np.arange(len(subjects))
width = 0.25 #
width of each bar
# Plotting grouped bars
plt.bar(x - width, student_A, width,
label="Student A", color="skyblue",
edgecolor="black")
plt.bar(x, student_B, width, label="Student
B", color="orange", edgecolor="black")
plt.bar(x + width, student_C, width,
label="Student C", color="green",
edgecolor="black")
# Adding labels and title
plt.xlabel("Subjects")
plt.ylabel("Marks")
plt.title("Comparison of Marks of Three Students
in 4 Subjects")
plt.xticks(x, subjects)
plt.legend()
# Display the chart
plt.show()
7. Plot a bar chart showing the number
of visitors to a park in different months.
Ans:
import matplotlib.pyplot as plt
# Data
months = ['January', 'February', 'March', 'April',
'May', 'June', 'July', 'August', 'September', 'October', 'November',
'December']
visitors = [120, 150, 170, 200, 250, 300, 350, 330,
280, 220, 180, 140] # Example visitor
numbers
# Plotting the bar chart
plt.bar(months, visitors, color='skyblue')
plt.title('Number of Visitors to the Park in Different
Months')
plt.xlabel('Months')
plt.ylabel('Number of Visitors')
plt.xticks(rotation=45)
plt.grid(axis='y', linestyle='--', alpha=0.7)
# Show the plot
plt.show()
8. Draw a bar chart for the production
of rice in different states of India.
Ans:
import matplotlib.pyplot as plt
# Data (Example values in million tonnes)
states = ['Punjab', 'Haryana', 'Uttar Pradesh',
'Bihar', 'West Bengal', 'Andhra Pradesh']
rice_production = [14.0, 10.5, 21.0, 11.5, 17.0, 9.0]
# Plotting the bar chart
plt.figure(figsize=(10,6))
plt.bar(states, rice_production, color='green')
plt.title('Rice Production in Different States of
India')
plt.xlabel('States')
plt.ylabel('Rice Production (million tonnes)')
plt.grid(True)
# Show the plot
plt.show()
9. Create a bar chart showing profit
earned by a company in 6 years.
Ans:
import matplotlib.pyplot as plt
# Data (example profits in million dollars)
years = ['2018', '2019', '2020', '2021', '2022',
'2023']
profit = [5, 7, 6, 8, 10, 12]
# Plotting the bar chart
plt.figure(figsize=(10,6))
plt.bar(years, profit,
color=['blue','orange','green','purple','magenta','cyan'])
plt.title('Company Profit Over 6 Years')
plt.xlabel('Years')
plt.ylabel('Profit (in million $)')
plt.grid(axis='y', linestyle='--', alpha=0.7)
# Show the plot
plt.show()
10. Plot a bar chart to compare
temperatures of 5 cities in summer and winter.
Ans:
import matplotlib.pyplot as plt
# Data (example profits in million dollars)
years = ['2018', '2019', '2020', '2021', '2022',
'2023']
profit = [5, 7, 6, 8, 10, 12]
# Plotting the bar chart
plt.figure(figsize=(10,6))
plt.bar(years, profit,
color=['blue','orange','green','purple','magenta','cyan'])
plt.title('Company Profit Over 6 Years')
plt.xlabel('Years')
plt.ylabel('Profit (in million $)')
plt.grid(axis='y', linestyle='--', alpha=0.7)
# Show the plot
plt.show()
No comments:
Post a Comment