Q1.
Consider a
given Series ,
Series1: 200 700
201 700
202 700
203 700
204 700
Write a program in Python Pandas
to create the series and display it.
Solutions
import pandas as pd
Series1=pd.Series(700,index=range(200,205))
print(Series1)
OUTPUT:
Q2. Consider the
following Series object, s
IP 95
Physics 89
Chemistry 92
Math 95
i. Write
the Python syntax which will display only IP.
ii. Write the Python syntax to increase
marks of all subjects by 10.
import pandas as pd
s=pd.Series([95,89,92,95],index=['IP','Physics','Chemistry','Math'])
print(s)
print(s.index[0])
print('='*10)
s=s+10
print(s)
Syntax:
seriesObject.index[index_number]
seriesObject=seriesObject+10
import pandas as pd
Series1=pd.Series([100,200,300,400,500],index=['A','B','C','D','E'])
Series2=Series1*2
print(Series1)
print(Series2)
Q5.Consider a given series : SQTR
QTR1 50000
QTR2 65890
QTR3 56780
QTR4 89000
QTR5 77900
Write a program in Python Pandas to create and display the series.
Solution:
import pandas as pd
val1=[50000,65890,56780,89000,77900]
idx=['QTR1','QTR2','QTR3','QTR4','QTR5']
SQTR=pd.Series(val1,index=idx)
print(SQTR)
OUTPUT:
QTR1 50000
QTR2 65890
QTR3 56780
QTR4 89000
QTR5 77900
dtype: int64
Q6. Creating a Series a Company gets same profit Rs. 80000 in
the first three months of the year 2022. Specify index with JAN, FEB, MAR.
Solution
import pandas as pd
n=80000
S=pd.Series(n,index=['JAN','FEB','MAR'])
print(S)
OUTPUT:
JAN 80000
FEB 80000
MAR 80000
dtype: int64
Q7. Creating a Series using scalar value ‘CBSE EXAM-2024’ and
indices as a with Term-1, Term-2, Term-3.
Solution
import pandas as pd
n='CBSE Exam-2024'
S=pd.Series(n,index=['Term-1', 'Term-2', 'Term-3'])
print(S)
OUTPUT:
Term-1 CBSE
Exam-2024
Term-2 CBSE
Exam-2024
Term-3 CBSE
Exam-2024
dtype: object
Q8. Predict the output in the following Python codes:
1. import pandas as pd
ob = pd.Series([200,
400, 600, 800, 1000]
ob[1] = 300
ob [3:]=400
print("Series
elements are:\n")
print(ob)
OUTPUT:
Series elements are:
0 200
1 300
2 600
3 400
4 400
dtype: int64
2. import pandas as pd
Nos1 = [45, 34, 47]
Nos2 = [32,40,37]
Sec = [A', 'B', 'C’]
ob1 = pd.Series(
data = Nos * 1 , index = Sec)
ob2= pd.Series(data
= Nos2, index = Sec)
print(ob1 + ob2)
OUTPUT:
A 77
B 74
C 84
dtype: int64
3. import pandas as pd
Val=[2, 4, 68]
S1 = pd.Series (data = Val)
print(S1 <6)
print(S1[S1<6])
OUTPUT:
0 True
1 True
2 False
dtype: bool
0 2
1 4
dtype: int64
4. import pandas as pd
S1 = pd.Series ([
12, 18, 51 ,45,191])
S2 = pd.Series ([5,8,7,9,2],[1,
2, 4,8, 12])
print(S1 + S2)
OUTPUT:
0 NaN
1 23.0
2 59.0
3 NaN
4 198.0
8 NaN
12 NaN
dtype: float64
5. import pandas as pd
L1 = [12, 23, 34,
56,78]
L2 = [1, 2, 3, 2,
4]
S1=pd.Series(data=L1,
index =L2)
print(S1[2])
OUTPUT:
2 23
2 56
dtype: int64
6. import pandas as pd
id=["AMAN",
"SUMIT" , "DIMPLE", "KKISHAN"]
L1 = [62, 73, 59,
82]
L2 = [69, 84, 66,
79]
S1=pd.Series(data
=L1, index = id)
S2=pd.Series(data
=L2,index=id)
print (S1+S2)
S =S1+S2
print(S)
OUTPUT:
AMAN 131
SUMIT 157
DIMPLE 125
KKISHAN 161
dtype: int64
AMAN 131
SUMIT 157
DIMPLE 125
KKISHAN 161
dtype: int64
7. import
pandas as pd
S1 = ([1, 2, 3, 4])
print (S1*3)
OUTPUT:
[1, 2, 3, 4, 1, 2, 3, 4, 1, 2, 3, 4]
8. import pandas as pd
S1=pd.Series( [2,
4, 6, 8], [1, 2, 3, 4])
S1[1:2] = 15
print(S1)
OUTPUT:
1 2
2 15
3 6
4 8
dtype: int64
9. import pandas as pd
L1 = [12, 23, 34,
56, 18, 29, 62, 34]
S1=pd.Series( data
=L1)
print( S1[S1 >
40])
OUTPUT:
3 56
6 62
dtype: int64
10. import pandas as pd
Ist = [6, 3, 5]
s1
=pd.Series(data = Ist)
print (Ist* 2)
print (s1 * 2)
OUTPUT:
[6, 3, 5, 6, 3, 5]
0 12
1 6
2 10
dtype: int64
Q9. Find the errors in the following statements (assuming
that the Pandas libra already imported with alias 'pd'):
1. ind = [1, 2, 3, 4, 5]
S1 = pd.Series([8,
10, 12, 14], index = ind)
Ans:
ind = [1, 2, 3, 4, 5]
S1 = pd.Series([8, 10, 12, 14, 15],
index = ind) #does not match length of index
2. S1=pd. Series(1, 2, 3, 4, index = range(4))
Ans:
S1=pd.Series([1, 2, 3, 4], index = range(4)) # type error
3. S1=pd. Series([1, 2, 3, 4], index = range(5))
Ans:
S1=pd. Series([1, 2, 3, 4], index = range(4))
4. S1=pd. Series([1, 2, 3, 4], [1, 2, 3, 4, 5, 6]]
Ans:
S1=pd. Series([1, 2, 3, 4, 5, 6], [1,
2, 3, 4, 5, 6]) #does not match length of
index
Q10. Given two series S1 and S2
S1 S2
A 39 A 10
B 41 B 10
C 42 D 10
D 44 F 10
Find the output for following python pandas statements?
a. S1[ : 2]*100
b. S1 * S2
c. S2[ : : -1]*10
Solution:
import pandas as pd
S1=pd.Series([39,41,42,44],['A','B','C','D'])
S2=pd.Series(10,['A','B','D','F'])
print(S1)
print(S2)
print(S1[ : 2]*100)
print(S1 * S2)
print(S2[ : : -1]*10)
OUTPUT:
A 39
B 41
C 42
D 44
dtype: int64
A 10
B 10
D 10
F 10
dtype: int64
A 3900
B 4100
dtype: int64
A 390.0
B 410.0
C NaN
D 440.0
F NaN
dtype: float64
F 100
D 100
B 100
A 100
dtype: int64
Q11. Given the following Series S1 and S2:
S1 S2
A
10 A 5
B
20 B 4
C
30 C 6
D
40 D 8
Write the command to find the multiplication of series S1 and S2
SOLUTION:
import pandas as pd
S1=pd.Series([10, 20,
30, 40],['A','B','C','D'])
S2=pd.Series([5, 4, 6,
8],['A','B','C','D'])
print(S1*S2)
OUTPUT:
import pandas as
pd
S1=pd.Series([10,
20, 30, 40],['A','B','C','D'])
S2=pd.Series([5,
4, 6, 8],['A','B','C','D'])
print(S1*S2)
Q12. Consider the following
Series object, “E- bike company” and its profit in Crores
Vespa 350
Komaki 200
Ather 800
Ola 150
i. Write the command which will display
the name of the company having profit>250.
ii. Write the command
to name the series as Profit.
Solution:
import pandas as pd
profit=[350,200,800,150]
idx=['Vespa','Komaki','Ather','Ola']
company=pd.Series(profit,index=idx)
print(company[company>250])
company.name="Profit"
print(company)
OUTPUT:
Vespa 350
Ather 800
dtype: int64
Vespa 350
Komaki 200
Ather 800
Ola 150
Name: Profit, dtype: int64
Q13. Write a Python code to create a Series S1 by using indices ranging from 10 to 20 at an interval of 2 and data ranging from 100 to 500 at an interval of 100. Display the Series.
SOLUTION:
import pandas as pd
S1=pd.Series(range(100,501,100),index=range(10,20,2))
print(S1)
OUTPUT
10 100
12 200
14 300
16 400
18 500
dtype: int64
Q13. Write a Python code to input five indices and data in a list and tuple respectively. Create a Series using object of your choice with the given indices and data. Finally, display Series.
import pandas as pd
data=eval(input("Enter your Data in list "))
S1=pd.Series(data)
print(S1)
data2=eval(input("Enter your Data in tuple
"))
S2=pd.Series(data2)
print(S2)
OUTPUT:
Enter your Data in list [10,30,60,70,90]
0 10
1 30
2 60
3 70
4 90
dtype: int64
Enter your Data in tuple (10,20,30,40,50)
0 10
1 20
2 30
3 40
4 50
dtype: int64
indices : 7, 4, 9, 2, 5 Data: 45, 67, 89,52,38 |
Organized the data based on:
(i) Ascending order of indices
(ii) Descending order of data
Finally, display the series after sorting in specified orders.
import pandas as pd
indices =[ 7, 4, 9, 2, 5]
Data=[ 45, 67, 89, 52, 38]
S1=pd.Series(Data,indices)
print("Original Series :")
print(S1)
print("Ascending Order of indices :")
print(S1.sort_index())
print("Descending order of data :")
print(S1.sort_values(ascending=False))
OUTPUT:
Original Series :
7 45
4 67
9 89
2 52
5 38
dtype: int64
Ascending Order of indices :
2 52
4 67
5 38
7 45
9 89
dtype: int64
Descending order of data :
9 89
4 67
2 52
7 45
5 38
dtype: int64
Q14. The name and ages of five students of your school are as given below:
Names : Satyansh, Vedant, Harman, Ayushi, Gargi Ages: 17,16,17,18, 19 |
Write a Python code to create a Series using names and ages as indices and data respectively. Sort the information based on alphabetical order of names. Finally, display the Series.
SOLUTION:
import pandas as pd
Names = ["Satyansh", "Vedant",
"Harman", "Ayushi", "Gargi"]
Ages = [17,16,17,18,19]
S1=pd.Series(Ages,Names)
print("Original Series :")
print(S1)
print("Ascending Order of indices :")
print(S1.sort_index())
OUTPUT:
Original Series :
Satyansh 17
Vedant 16
Harman 17
Ayushi 18
Gargi 19
dtype: int64
Ascending Order of indices :
Ayushi 18
Gargi 19
Harman 17
Satyansh 17
Vedant 16
dtype: int64
Q15. Write a Python code to create a Series using item
number and price if four items as indices and data correspondingly. The price
of items has increased by 5%. Update the price of each item and display the
Series.
SOLUTION:
import pandas as pd
price =
eval(input("Enter price list of four items :"))
S1=pd.Series(price,index=range(4))
print("Original
Series :")
print(S1)
S1=S1+S1*5/100
print("Update 5%
increase price list :")
print(S1)
OUTPUT:
Enter price list of four items :[2300,4000,2000,1500]
Original Series :
0 2300
1 4000
2 2000
3 1500
dtype: int64
Update 5% increase price list :
0 2415.0
1 4200.0
2 2100.0
3 1575.0
dtype: float64
Q16. Write a Python code to accept the names of ten
cricket players and their country names in two 1D lists correspondingly.
Display the player’s name along with the country who belongs to “India”
SOLUTION:
import pandas as pd
players =
eval(input("Enter 10 players list :"))
cont =
eval(input("Enter Country name :"))
S1=pd.Series(cont,index=players)
print("Original Series
:")
print(S1)
print("Show India
Cricket Players")
print(S1[S1=='India'])
OUTPUT:
Enter 10 players list
:['Virat','Moeen','Dhoni','Michael','Steve','Rishabh','George','Sachin','Nathan','Aiden']
Enter Country name
:['India','England','India','England','India','Australia','India','Australia','Africa','Africa']
Original Series :
Virat
India
Moeen
England
Dhoni
India
Michael
England
Steve
India
Rishabh
Australia
George
India
Sachin
Australia
Nathan
Africa
Aiden
Africa
dtype: object
Show India Cricket Players
Virat India
Dhoni India
Steve India
George India
dtype: object
Q17. Write a Python code create two Series objects
with following specifications:
S1 |
S2 |
||
Indices |
Data |
Indices |
Data |
0 |
12 |
0 |
15.67 |
1 |
38 |
1 |
34.42 |
2 |
42 |
2 |
18.91 |
3 |
56 |
3 |
25.46 |
4 |
31 |
4 |
39.99 |
Perform
the following operations:
(i)
Add data
of both the Series objects correspondingly.
(ii)
Multiply
the data of both the Series objects correspondingly.
(iii)
Enlist the
data which are correspondingly bigger in both the Series objects.
(iv)
Enlist the
data which are correspondingly smaller in both the Series objects.
Display
the information after each operation.
SOLUTION:
import pandas as pd
Data1=[12,38,42,56,31]
Data2=[15.67,34.42,18.91,25.46,39.99]
S1=pd.Series(Data1)
S2=pd.Series(Data2)
print("First Series")
print(S1)
print("Second Series")
print(S2)
print("Add both Series")
print(S1+S2)
print("Larger value :")
print(max(S1), max(S2), sep=',')
print("Smaller value :")
print(min(S1), min(S2), sep=',')
OUTPUT:
First
Series
0 12
1 38
2 42
3 56
4 31
dtype:
int64
Second
Series
0 15.67
1 34.42
2 18.91
3 25.46
4 39.99
dtype:
float64
Add both
Series
0 27.67
1 72.42
2 60.91
3 81.46
4 70.99
dtype:
float64
Larger
value :
56,39.99
Smaller
value :
12,15.67
Q18. Write a python code to create a Series with the
following specifications:
Indices : 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 Data: 17, 16, 18, 15, 24, 65, 44, 87, 27, 69 |
Display the data corresponding to the indices:
(i)
From 1 to
5
(ii)
From 0 to
9 at interval of 3
(iii)
From 6 to
last
(iv)
From Ist 4
indices
SOLUTION:
import pandas as pd
Indices =[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Data =[ 17, 16, 18, 15, 24, 65, 44, 87, 27, 69]
S1= pd.Series(Data, Indices)
print("Original Series")
print(S1)
print("Show Series From 1 to 5")
print(S1.loc[1:5])
print("Show Series From 0 to 9 at interval of
3")
print(S1.loc[0:9:3])
print("Show Series From 6 to last")
print(S1.tail(6))
print("Show Series From Ist 4 indices")
print(S1.loc[1:4])
OUTPUT:
Original Series
0 17
1 16
2 18
3 15
4 24
5 65
6 44
7 87
8 27
9 69
dtype: int64
Show Series From 1 to 5
1 16
2 18
3 15
4 24
5 65
dtype: int64
Show Series From 0 to 9 at interval of 3
0 17
3 15
6 44
9 69
dtype: int64
Show Series From 6 to last
4 24
5 65
6 44
7 87
8 27
9 69
dtype: int64
Show Series From Ist 4 indices
1 16
2 18
3 15
4 24
dtype: int64
OR
import pandas as pd
Indices =[ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9]
Data =[ 17, 16, 18, 15, 24, 65, 44, 87, 27, 69]
S1= pd.Series(Data, Indices)
print("Original Series")
print(S1)
print("Show Series From 1 to 5")
print(S1[1:6])
print("Show Series From 0 to 9 at interval of
3")
print(S1[0:10:3])
print("Show Series From 6 to last")
print(S1.tail(6))
print("Show Series From Ist 4 indices")
print(S1[1:5])
OUTPUT:
Original Series
0 17
1 16
2 18
3 15
4 24
5 65
6 44
7 87
8 27
9 69
dtype: int64
Show Series From 1 to 5
1 16
2 18
3 15
4 24
5 65
dtype: int64
Show Series From 0 to 9 at interval of 3
0 17
3 15
6 44
9 69
dtype: int64
Show Series From 6 to last
4 24
5 65
6 44
7 87
8 27
9 69
dtype: int64
Show Series From Ist 4 indices
1 16
2 18
3 15
4 24
dtype: int64
Q19. Write a Python code to assign the names and the total marks of 3 subjects, secured by 10 students of class XII in a dictionary as key:value pairs respectively. Create a Series
No comments:
Post a Comment