Q1.
|
What is the purpose of index attribute in dataframe: (a)
Fetch the dimension
of the given dataframe (b)
Fetch the size of
the given dataframe (c)
Fetch both index
and column names of the given dataframe (d)
Fetch the index’s
name in the dataframe Ans: (d) |
Q2.
|
What is the purpose of ndim attribute in dataframe: (a)
Fetch the dimension
of the given dataframe (b)
Fetch the size of
the given dataframe (c)
Fetch both index
and column names of the given dataframe (d)
Fetch the data type
values of the items in the dataframe Ans: (a) |
Q3.
|
What is the purpose of size attribute in dataframe: (a)
Fetch the dimension
of the given dataframe (b)
Fetch the size of
the given dataframe (c)
Fetch both index
and column names of the given dataframe (d)
Fetch the data type
values of the items in the dataframe Ans : (b) |
Q4.
|
What is the purpose of axes attribute in dataframe: (a)
Fetch the dimension
of the given dataframe (b)
Fetch the size of
the given dataframe (c)
Fetch both index
and column names of the given dataframe (d)
Fetch the index’s
name in the dataframe Ans : (c) |
Q5.
|
From the 6th
display the 3rd, 4th and 5th columns from 6th to 9th rows of a
dataframe DF, you can write ______________. (a)
DF.loc[6:9,3:5] (b)
DF.loc[6:10,3:6] (c)
DF.iloc[6:10,3:6] (d)
DF.iloc[6:9,3:5] Ans: (c) |
Q6.
|
To change the 5th column’s value at 3rd row as 35 in
dataframe DF you can write ________. (a)
DF.loc[4,6]=35 (b)
DF[3,5]=35 (c)
Df.iat[4,6]=35 (d)
Df.iat[3,5]=35 Ans: (d) |
Q7.
|
Which among the following options can be used to
create a DataFrame in Pandas? (a)
A scalar value (b)
An ndarray (c)
A python (d)
All of these Ans: (d) |
Q8.
|
What is the output of the following code: import pandas as pd resultDict={'Mohit':pd.Series([76,98,54],
index=['Physics','Chemistry', 'Maths']),\
'Priya':pd.Series([65,87,43],index=['Physics','Chemistry', 'Maths']),\
'Deep':pd.Series([60,75,83],index=['Physics','Chemistry', 'Maths'])} resultDF=pd.DataFrame(resultDict) print(resultDF.T) (a)
Mohit Priya
Deep Physics 76
65 60 Chemistry 98
87 75 Maths 54 43
83 (b)
Physics Chemistry
Maths Mohit 76
98 54 Priya 65 87 43 Deep 60 75 83 (c)
Wrong Code (d)
None of these Ans: (b) |
Q9.
|
Consider the following snippet: import pandas as pd resultDict={'Jyoti':pd.Series([76,98,54],
index=['Physics','Chemistry', 'Maths']),\
'Vanshi':pd.Series([65,87,43],index=['Physics','Chemistry',
'Maths']),\
'Aviral':pd.Series([60,75,83],index=['Physics','Chemistry',
'Maths']),\
'Ankita':pd.Series([63,78,80],index=['Physics','Chemistry', 'Maths'])} resultDF=pd.DataFrame(resultDict) print(resultDF.count()) (a)
Jyoti 3 Vanshi 3 Aviral 3 Ankita 3 dtype: int64 (b)
Physics 4 Chemistry 4 Maths 4 dtype: int64 (c)
Both (a) and (b) (d)
None of these Ans: (a) |
Q10.
|
Consider the following snippet: import pandas as pd resultDict={'Jyoti':pd.Series([76,98,54],
index=['Physics','Chemistry', 'Maths']),\
'Vanshi':pd.Series([65,87,43],index=['Physics','Chemistry',
'Maths']),\
'Aviral':pd.Series([60,75,83],index=['Physics','Chemistry',
'Maths']),\ 'Ankita':pd.Series([63,78,80],index=['Physics','Chemistry',
'Maths'])} resultDF=pd.DataFrame(resultDict) print(resultDF.T.count()) (a)
Jyoti 3 Vanshi 3 Aviral 3 Ankita 3 dtype: int64 (b)
Physics 4 Chemistry 4 Maths 4 dtype: int64 (c)
Both (a) and (b) (d)
None of these Ans: (b) |
Q11.
|
Consider the following snippet: import pandas as pd resultDict={'Jyoti':pd.Series([76,98,54],
index=['Physics','Chemistry', 'Maths']),\
'Vanshi':pd.Series([65,87,43],index=['Physics','Chemistry', 'Maths']),\
'Aviral':pd.Series([60,75,83],index=['Physics','Chemistry',
'Maths']),\
'Ankita':pd.Series([63,78,80],index=['Physics','Chemistry', 'Maths'])} resultDF=pd.DataFrame(resultDict) ##print(resultDF.T) print(resultDF.count(axis='columns')) (a)
Jyoti 3 Vanshi 3 Aviral 3 Ankita 3 dtype: int64 (b)
Physics 4 Chemistry 4 Maths 4 dtype: int64 (c)
Both (a) and (b) (d)
None of these |
Q12.
|
Consider the following snippet: import pandas as pd resultDict={'Jyoti':pd.Series([76,98,54],
index=['Physics','Chemistry', 'Maths']),\
'Vanshi':pd.Series([65,87,43],index=['Physics','Chemistry',
'Maths']),\
'Aviral':pd.Series([60,75,83],index=['Physics','Chemistry',
'Maths']),\
'Ankita':pd.Series([63,78,80],index=['Physics','Chemistry', 'Maths'])} resultDF=pd.DataFrame(resultDict) ##print(resultDF.T) print(resultDF.count(axis=‘index’)) (a)
Jyoti 3 Vanshi 3 Aviral 3 Ankita 3 dtype: int64 (b)
Physics 4 Chemistry 4 Maths 4 dtype: int64 (c)
Both (a) and (b) (d)
None of these |
Q13.
|
The axis 1 identifies a dataframe’s__________ (a)
represents rows (b)
represents columns (c)
represents values (d)
represents ndim Ans: (2) |
Q14.
|
The axis 0 identifies a dataframe’s__________ (a)
represents rows (b)
represents columns (c)
represents values (d)
represents ndim Ans: (a) |
Q15.
|
To get transpose of a dataframe DF, you can
write_______ (a)
DF.T (b)
DF.Transpose (c)
DF.Swap (d)
All of these Ans: (a) |
Q16.
|
Consider the following snippet: import pandas as pd resultDict={'Jyoti':pd.Series([76,98,54], index=['Physics','Chemistry',
'Maths']),\
'Vanshi':pd.Series([65,87,43],index=['Physics','Chemistry',
'Maths']),\
'Aviral':pd.Series([60,75,83],index=['Physics','Chemistry',
'Maths']),\
'Ankita':pd.Series([63,78,80],index=['Physics','Chemistry', 'Maths'])} resultDF=pd.DataFrame(resultDict) print(____________) Choose the correct for fetch data types of
dataframes (a)
resultDF.dtype (b)
resultDF.dtypes (c)
resultdf.dtype (d)
resultdf.dtypes Ans: (b) |
Q17.
|
Study code carefully and display the IP marks in
ascending order. Write the code in fill in the blank: import pandas as pd resultDict={'Physics':pd.Series([76,98,54]),
'Maths':pd.Series([65,87,43]),\
'English':pd.Series([60,75,83]),'IP':pd.Series([63,78,80])} resultDF=pd.DataFrame(resultDict) print(resultDF) print(_______________________)) (a)
resultDF.sort_values(by=['IP'],
asc=False (b)
resultDF.sort_values(by=['IP'],
desc=True (c)
resultDF.sort_values(by=['IP'],
ascending=False (d)
resultDF.sort_values(by=['IP'],
ascending=True Ans: (d) |
Q18.
|
Study code carefully and display the IP marks in descending
order. Write the code in fill in the blank: import pandas as pd resultDict={'Physics':pd.Series([76,98,54]),
'Maths':pd.Series([65,87,43]),\
'English':pd.Series([60,75,83]),'IP':pd.Series([63,78,80])} resultDF=pd.DataFrame(resultDict) print(resultDF) print(_______________________)) (a)
resultDF.sort_values(by=['IP'],
asc=False (b)
resultDF.sort_values(by=['IP'],
desc=True (c)
resultDF.sort_values(by=['IP'],
ascending=False (d)
resultDF.sort_values(by=['IP'],
ascending=True Ans: (c) |
Q19.
|
Rename column name ‘RollNO’ of the following
dataframe: import pandas as pd s1=[101,102,103,104,105] df=pd.DataFrame(s1) print(df) Output
0 0
101 1
102 2
103 3
104 4
105 (a)
Df.columns=[‘RollNo’] (b)
Df.Columns=[‘RollNo’] (c)
df.columns=[‘RollNo’] (d)
df.column=[‘RollNo’] Ans: (c) |
Q20.
|
Which method used to add new column (a)
assign() (b)
insert() (c)
both (a) and (b) (d)
none of these Ans: (c) |
Q21.
|
Choose correct syntax Selecting/Accessing a Column (a)
<DataFrame
object>[column name] (b)
<DataFrame object>.<column
name> (c)
Both (a) and (b) (d)
None of these Ans: (c) |
Q22.
|
Choose correct Syntax Selecting/Accessing Multiple
Columns: (a)
<DataFrame
object>[[<column name>,<column name>, ……..]] (b)
<DataFrame
object>[<column name>,<column name>, ……..] (c)
<DataFrame
object>([<column name>,<column name>, ……..]) (d)
<DataFrame
object>{[<column name>,<column name>, ……..]}
Ans : (a) |
Q23.
|
Choose correct Selecting/Accessing a subset from a
Dataframe using Row/Column Names (a)
<DataFrame object>.loc[<startrow>,<endrow>,<startcolumn>,<endcolumn>] (b)
<DataFrame
object>.loc [<startrow>:<endrow>,<startcolumn>:<endcolumn>] (c)
<DataFrame
object>.loc [[<startrow>:<endrow>,<startcolumn>:<endcolumn>]] (d)
All of these Ans: (c) |
Q24.
|
import pandas as pd SData={"name":['Taran','Vinay','Vinita','Rishabh','Ravi','Manoj'],\
'Accounts':[54,76,98,54,76,87],'English':[89,87,54,89,43,67],\
'Bst':[65,67,87,56,87,54]} Sno=['Sno1','Sno2','Sno3','Sno4','Sno5','Sno6'] df=pd.DataFrame(SData,index=Sno) print(df) print("To Access Row") print(____________) How to access Sno2 Record. Choose correct code: (a)
df.iloc['Sno2',:] (b)
df.loc['Sno2',:] (c)
df.loc['no2',:] (d)
All of these Ans: (b) |
Q25.
|
Choose the correct syntax access selective columns: (a)
<DataFrame
object>.loc[:,<start column>:<end column>] (b)
<DataFrame
object>loc[:,<start column>:<end column>] (c)
<DataFrame
object>.loc[<start column>:<end column>] (d)
<DataFrame
object>.loc[(:,<start column>:<end column>)] Ans: (a) |
Q26.
|
import pandas as pd SData={"name":['Taran','Vinay','Vinita','Rishabh','Ravi','Manoj'],\
'Accounts':[54,76,98,54,76,87],\
'English':[89,87,54,89,43,67],\
'Bst':[65,67,87,56,87,54],\
'IP':[98,76,98,56,87,99]} Sno=['Sno1','Sno2','Sno3','Sno4','Sno5','Sno6'] df=pd.DataFrame(SData,index=Sno) print(df) print("To access selective columns") print(df.loc[:,'Accounts':'IP']) print() print(__________________)) Suggest Aviral, how to display ‘Accounts’ and
English: (a)
df.loc[:,'Accounts':'English'] (b)
df.iloc[:,0:3] (c)
both (a) and (b) (d)
df.iloc(:,0:3) Ans : (b) |
Q27.
|
What is the output of the following code: import pandas as pd SData={"name":['Taran','Vinay','Vinita','Rishabh','Ravi','Manoj'],\ 'Accounts':[54,76,98,54,76,87],'English':[89,87,54,89,43,67],\
'Bst':[65,67,87,56,87,54], 'IP':[98,76,98,56,87,99]} Sno=['Sno1','Sno2','Sno3','Sno4','Sno5','Sno6'] df=pd.DataFrame(SData,index=Sno) print("To access range of columns from range of
rows") print(df.loc['Sno2':'Sno5','Accounts':'IP']) (a)
Accounts English
Bst IP Sno2 76 87
67 76 Sno5 76 43
87 87 (b)
Accounts IP Sno2 76 76 Sno3 98 98 Sno4 54 56 Sno5 76 87 (c)
Accounts English
Bst IP Sno2 76 87
67 76 Sno3 98 54
87 98 Sno4 54 89
56 56 Sno5 76 43
87 87 (d)
Accounts IP Sno2 76 76 Sno5 76 87 Ans: (c) |
Q28.
|
Write the purpose of loc (a)
loc is
label-based, which means that you have to specify rows and columns based on
their row and column labels. (b)
loc is integer
position-based, so you have to specify rows and columns by their integer
position values (0-based integer position). (c)
Option (a) is
correct (d)
Both (a) and (c) Ans: (d) |
Q29.
|
>>> df.loc['Fri', :] What is the purpose of above code (a)
To get all columns (b)
To set all columns (c)
To get all rows (d)
To set all rows Ans: (a) |
Q30.
|
>>> df.loc[['Thu', 'Fri'],
'Temperature'] What is the purpose of above code: (a)
To get Thu, Fri
columns and Temperature row (b)
To get Thu, Fri
rows and Temperature column (c)
Both (a) and (b)
are wrong statements (d)
None of these Ans: (b) |
Q31.
|
Who is the main author of Pandas? (a)
Dennis M. Ritchie (b)
Guido van Rossum (c)
James
Gosling (d)
Wes McKinney Ans: (d) |
Q32.
|
Choose the correct command using insert() function
to add a new column in the last place (3rd place) named “Salary”
from the list Sal=[1000,2000,6000] in an existing dataframe named EMP already
having 2 columns. (a)
Emp.insert(loc=3,column=”Salary”,value=Sal) (b)
Emp.insert(loc=3,column=”Sal”,value=Salary) (c)
Emp.insert(loc=3,columns=”Salary”,value=Sal) (d)
None of these Ans: (a) |
Q33.
|
Choose the correct source code to create dataframe
with the heading (a and b) from the list given below: [[1,2],[3,4],[5,6],[7,8]] (a)
import pandas as pd Df=pd.DataFrame([[1,2],[3,4]],column=['a','b']) Df2=pd.DataFrame([[5,6],[7,8]],column=['a','b']) Df=Df.append(Df2) print(Df) (b)
(b) import pandas
as pd Df=pd.DataFrame([[1,2],[3,4]],columns=['a','b']) Df2=pd.DataFrame([[5,6],[7,8]],columns=['a','b']) Df=Df.append(Df2) print(Df) (c)
import pandas as pd Df=pd.DataFrame([[1,2],[3,4]],index=['a','b']) Df2=pd.DataFrame([[5,6],[7,8]],index=['a','b']) Df=Df.append(Df2) print(Df) (d)
Both (a) and (b) Ans : (b) |
Q34.
|
Assume a dataframe df1 that contains data about
climatic conditions of various cities with C1,C2,C3,C4 and C5 as indexes and
give the output of question from >>>df1.shape (a)
(4,5) (b)
(5,4) (c)
(5,5) (d)
(4,4) Ans : (b) |
"Python Tutorial". Welcome to my blog contains material for students studying Python at Class XI & XII (CBSE) for Computer Science and Informatics Practices.
Saturday, 31 July 2021
MCQ DataFrame-I
Subscribe to:
Post Comments (Atom)
No comments:
Post a Comment